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ON S-ENDO-NOETHERIAN RINGS

MOHAMMED ISSOUAL AND SALAH EDDINE MAHDOU

ABSTRACT. A commutative ring A is said to be an S-endo-Noetherian
ring, where S is a multiplicative subset of A, if the chain of annihilators
anna(ai) C anna(az) C --- is S-stationary; (i.e, there exist s € S and
a positive integer n such that s.(anna(ax)) C anna(ay) for each k > n)
for each sequence (ar)r>1 of elements of A. We study several properties
of an S-endo-Noetherian ring. Among other results, the transfer of this
property to the amalgamated duplication of A along an ideal I (A T)
is investigated, as well as the necessary and sufficient conditions for
R[[X]] (resp., R[X]) to be an S-endo-Noetherian ring.
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1. INTRODUCTION

Throughout this paper, all rings are assumed to be commutative with
identity and all modules are nonzero unitary. Our purpose is to generalize
the study of endo-Noetherian rings to the class of S-endo-Noetherian rings.
The notion of an endo-Noetherian rings was introduced by B. Gouaid, A.
Hamed and A. Benhissi [12].

Let A be a ring and M be an A-module. We say that M is an endo-
Noetherian module if it satisfies the ascending chain condition for the kernels
of the endomorphism; i.e, each increasing sequence of the form ker(f;) C
ker(f2) C .... is stationary, where (f;)r>1 is a sequence of endomorphisms
of M. A ring A is said to be endo-Noetherian if it is endo-Noetherian as
a A-module; i.e, each chain of annihilators ann(a;) C ann(az) C --- is
stationary. The class of S-endo-Noetherian rings includes the class of S-
Noetherian rings [12].

Let A be a ring and E be an A-module. The following ring construction,
called the trivial ring extension of A by E (also called the idealization of
E), was introduced by Nagata [19, page 2]. Tt is the ring A(+)FE whose un-
derlying abelian group is A x E with multiplication given by (a,e)(b, f) =
(ab,af + be). Trivial ring extensions have been studied extensively; and
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considerable work has been concerned with these extensions. Mainly, triv-
ial ring extensions have been useful for solving many open problems and
conjectures in both commutative and non-commutative ring theory.

Let A be aring and I an ideal of A. The following ring construction, called
the amalgamated duplication of A along I, was introduced by D’Anna in
[8]. It is the subring A < I of A x A given by

A :={(a,a+1)|ac Aand i€ I}

This extension has been studied, in the general case and from the different
point of view of pullbacks, by D’Anna and Fontana [10]. Also see the survey
article [11] for more details on general constructions. If 12 = 0, then A > [
coincides with Nagata’s idealization (A o E). One main difference of this
construction, with respect to the idealization, is that the ring A < I can be
reduced (and it is always reduced if A is an integral domain). Our paper
consists of three sections.

In section 2, we study several properties of S-endo-Noetherian rings.
Among other thing, we show that, if a ring A satisfies the property S — (%),
then it satisfies the S — acer condition (we say that A satisfies the S — acer
condition if the ascending chain of colon ideals of the form (I : a) C (I :
a?) € (I : a®) C --- is S-stationary for each a € A and every ideal I of
A), where the S — (%) property means: every increasing sequence of the
form (I : a;) C (I : ag) C --- is S-stationary, where I is an ideal of A
and (ag)r>1 a sequence of elements of A. We also show that A satisfies the
property S — (%) if and only if A/I is an S-endo-Noetherian ring for each
ideal I of A. Then we provide an answer to the question of when the amalga-
mated duplication, of A along an ideal I, A > [ is an S x S-endo-Noetherian
ring. It is well known that a regular element of A is by definition a not a
zero-divisor. Also, we say that an ideal I is a regular ideal if it contains a
regular element of A. We prove that if I is a regular ideal of A, then A is an
S-endo-Noetherian ring if and only if A 0 I is an S x S-endo-Noetherian
ring.

In section 3, we find a necessary and sufficient conditions for a formal
power series ring R[[X]] and a a polynomial ring R[X] to be an S-endo-
Noetherian ring.

2. GENERAL PROPERTIES

Recall from [20] that a ring A is said to be endo-Noetherian if the increas-
ing sequence ann 4(a1) C anna(az) C .... is stationary for any sequence (a)g
of elements of A. Let S be a multiplicative subset of A. According to [13], an
increasing sequence (I )y of ideals of A is called S-stationary if there exist a
positive integer n and s € S such that for each k > n, sl C I,,. We start this
section by introducing the following definition in order to generalize several
well-known results about endo-Noetherian rings.
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Definition 2.1. Let A be a commutative ring and S a multiplicative subset
of A. We say that A is an S-endo-Noetherian ring if the chain of annihilators
anng(a;) C anna(ag) C --- is S-stationary for each sequence (ay)r of
elements of A.

In the following examples we illustrate the link between endo-Noetherian
rings, S-Noetherian rings and S-endo-Noetherian rings. As usual, A denotes
a commutative ring and S be a multiplicative subset of A,

Ezxample 2.2. If A is endo-Noetherian, then A is an S-endo-Noetherian ring.

Ezxample 2.3. If S consists of units of A, then A is an S-endo-Noetherian
ring if and only if A is an endo-Noetherian ring.

Example 2.4. If A is an S-Notherian ring, then A is an S-endo-Notherian
ring. Indeed, by [13, Remark 2.3], every increasing sequence of ideals of A
is S-stationary. But the converse is false. Let K be a field and E be a K-
vector space of infinite dimension. Set K (+)E to be the trivial extension of
K by E. According to [18, Theorem 3.8], the ring K (+)E is not {1}(+)E-
Noetherian. Now, we will show that K(+)FE is a {1}(+)E-endo-Noetherian
ring.

Let (a,e) € K(+)E\{(0,0)}. Let (b, f) € anng1yg(a,e). Then (a,e)(b, f) =
(ab,af + be) = (0,0). Now if @ # 0, then b = 0 and f = 0. If a = 0, then
e# 0and be =0,s0 b =0 and f € E is arbitrary. Hence

(0,0) if a#0
ann)p(a; ) _{ 0(+)E if a=0 -

On the other hand, for every g € F, we have

Now, let (ag, ex)r>1 be a sequence of elements of K (+)FE such that

annK(+)E(a1,el) - annK(+)E(a2,eg) C.ve

If a;, = 0 for each a positive integer k > 1, then anng g (ax, ex) = 0(+)E
and for each s € {1}(+)E, s.anng(q)p(a, ex) = anngg(an, e,) for each
positive integer n. Let p be the first positive integer such that a, # 0. Then
for each positive integer n > p, we have (1, g)anng 4 )g(ap,ep) = 0(+)E =
anng(4yg(ap, €p). Therefore the ring K(+)E is a {1}(+) E-endo-Noetherian
ring.

In the light of Example 2.2, the following proposition shows that, for a
useful kind of condition, one can characterize when we have the converse.

Proposition 2.5. Let A be a ring and S be a multiplicative subset of A
such that S C A\ Z(A). Then A is S-endo-Noetherian if and only if A is
endo-Noetherian.
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Proof.
The “only if” half is trivial. Conversely, let (ax) > 1 be a sequence of
elements of A such that ann(ai;) C ann(ag) C --- . Then, there exist

s € S and n € N such for each integer k > n, s.ann(ar) C ann(a,). Let
x € ann(ag). Then sxa, = 0. As s is regular, we conclude that za, = 0.
Hence ann(ar) C ann(a,) for each positive integer & > n. Thus A is an
endo-Noetherian ring. O

Proposition 2.6. Let A C B be an extension of commutative rings and
S C A be a multiplicative set. If B is an S-endo-Noetherian ring, then so
is A.

Proof.

Let ann(a1) C ann(az) C --- be an increasing sequence of annihilators
of A, where (ay)r>1 is a sequence of elements of A. Since B is S-endo-
Noetherian, the sequence (annpg(ag)) is S-stationary. So there exist s € S
and a positive integer n such that for each k > n, s(annpg(ax)) C annp(ay).
This implies that for each k > n, s (anng(ax) N A) C anng(a,) N A. Thus
for each k > n, s(anna(ax)) C anna(ay). Hence A is an S-endo-Noetherian
ring. O

Let A be aring and S C A be a multiplicative set. We say that A satisfies
the property S — (x), if every increasing sequence of the form (I : a;) C (I :
az) C --- is S-stationary, where I is an ideal of A and (ay)j is a sequence
of elements of A. It is clear that if A satisfies the property S — (x), then A
is S-endo-Noetherian. Note that if A satisfies the property S — (), then A
satisfies the S —accr condition (i.e, A is said to satisfy the S —acer condition
if the ascending chain of residuals of the form (I : a) C (I : a?) C --- is
S-stationary for each a € A and every ideal I of A ( cf. [13])).

Let A be a ring, S a multiplicative subset of A and I be an ideal of A.
Set S := {3;s € S}. It is clear that S is a multiplicative subset of A/I.

The following theorem characterizes the rings which satisfies the property
S — (%) in terms of S-endo-Noetherian rings.

Theorem 2.7. Let A be a ring and S C A a multiplicative set. The following
assertions are equivalent:

(1) A/I is an S-endo-Noetherian ring for each ideal I of A such that

Ins=40.
(2) A satisfies the property S — ().
Proof.
(1) = (2) Let I be an ideal of A such that I NS = 0 and (ag)x a
sequence of elements of A with (I : a1) C (I : ag) C ---. We will show

that anna/r(a@r) C anng/r(@g1). Let T € annyyr(ag). Then xap € I,
sox € (I :ar) C (I: agsr), which implies zagy1 € I. Therefore, T €
anny;r(ags+1). Now, since A/I is S-endo-Noetherian, there exist s € S and
a positive integer n such that for each k > n, S(anny, (@) C anny,(@n).
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Let # € (I : ax). Then zay € I, which implies that 5za, = 0 in A/I. Hence
sxay € I, 80 sz € (I :ay). Thus s(I : ax) C (I : ay) for each k > n. Then A
satisfies the property S — (x).

(2) = (1) Let (ax)x>1 be a sequence of elements of A such that ann 4, (@)
C annA/[(a_g ) C -+ . We show that (I : a1) € (I : ag) C --- . Let

€ (I : ag). Then T € anny r(ax) C annyr(@r1). Thus z € (I @ agy).
Now since A satisfies the property S— (), there exist an s € S and a positive
integer n such that for each & > n, s(I : ax) C (I : an). Let T € anny r(ax).
Then zay € I, which implies sz € (I : ay,). This implies sTa, = 0 in A/I.
Then 57 € annyyq(an), and hence s(anny,r(ag)) S annyj (@) for each
integer k > n. Thus, A/I is an S-endo-Noetherian ring. O

The previous theorem allows us to construct an example of a non S-
Noetherian ring that satisfies the condition S — ().

Ezxample 2.8. Let K be a field and F a K-vector space of infinite dimension.
Consider A := K(+)FE to be the trivial ring extension of K by E. By [18,
Theorem 3.8], the ring A := K(+)E is not {1}(+)E- Noetherian. We will
show that every ideal of K (+)E is the form 0(+)F, where F is a sub-space
of E.

Indeed, let I be a proper ideal of K(+)FE. Suppose that I contains an
element (a,e) with a # 0. Then (a,e). (é,—a%e) = (1,0) € I, hence I =
K(+)E since (1,0) is the unity of K(4)E. Thus each proper ideal I is
contained in 0(+)E. Using [1, Corollary 3.4], the proper ideal contained in
0(+)E is of the form 0(+)F, where F is a sub-space of E. By [1, Theorem

3.1}, we have (K(+)E) / (0(+)F) ~ K(+)(E/F).
Corollary 2.9. [13, Theorem 2.9] The following assertions are equivalent
for a ring A.
(1) A/I is an endo-Noetherian ring for each ideal I of A.
(2) A satisfies the property ().
Proof. Follows from Theorem 2.7 with S = {1}. O

Proposition 2.10. Let A, B be two rings and let f : A — B be a ring
homomorphism. Let S be a multiplicative subset of A. If R satisfies S —
(%), then f(A) satisfies f(S) — (%). In particular, f(A) is an f(S)-endo-
Noetherian ring.

Proof.

Let I be an ideal of f(R), and a1, az,... € R such that (I :yry f(a1)) C
(I “F(R) f(ag)) C --- . We will show that (ff ( ) ‘R al) - ( 71( ) ‘R
az) C -+ . Let x € (f7'(I) :r a;). Then f(z) € (I :fg) f(ai)). Therefore

f(x) € (I :y(r)y fai+1)), and hence z € (f~1(I) :r ait1).

Now, since R satisfies S — (x), there exist an s € S and a positive integer
n such that s(f~*(I) :g ax) C (f~*(I) :g ay) for each k > n. We show that
for each k > n, f(s).(I :ya) ar) € (I :a an). Let € A such that f(x) €
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(I :pcay ax), then z € (f71(I) :a ax) which implies sz € (f7'(I) :a an).
Hence f(s)f(x)f(an) € I. Therefore f(s).(I :p(ay ar) € (1 :a an).
The ”in particular” is clear. ]

Theorem 2.11. Let A and B be two rings and let S1 and Sy be a multiplica-
tive subset of A and B, respectively: set S := S1 x Sy. Then the following
statements are equivalents:

(1) A x B is an S-endo-Noetherian ring.
(2) A is an Si-endo-Noetherian ring and B is an Sa-endo-Noetherian
ring.

Proof.

(1) = (2) Let (ax)ren+ be a sequence of elements of A such that
anng(a1) C anng(az) C --- . It is easy to see that annaxp((a1,0)) C
anngxp((agz,0)) C -+ . Since A x B is an S-endo-Noetherian ring, there ex-
ist (s,t) € S = S1x 53 and a positive integer n such that (s, t).ann((a,0)) C
ann((an,0)) for each k > n. Let z € ann(ay) where k > n. Then (s,t)(z,0)(ay,
,0) = (0,0), so szt € ann(ay,). Hence s.ann(ax) € ann(a,) for each k > n.
Thus A is an Sj-endo-Noetherian ring. By the same argument we conclude
that B is an S-endo-Noetherian ring.

(2) = (1) Let (ag, bk)ren+ be a sequence of elements of A x B such that
annaxp(ar,b1) C annaxp(ag, by) C --- . It is easy to see that anna(ai) C
anng(ag) C --- and anng(by) C annpg(by) C --- . Since A is an Si-
endo-Noetherian ring and B is an Sz-endo-Noetherian ring, there exist s1 €
S1,82 € Sy and a positive integer n such that sj.anng(ax) C anna(ay)
and sg.annp( by) C annp(by,). It is clear that (s1,s2).annaxp(ak,br) C
annaxg(an,by) for each k > n. Hence A x B is an S7 X Sy-endo-Noetherian
ring. ]
Corollary 2.12. Let (A;)1<i<n be a finite family of rings and A =[]}, A;.
For each 1 < i <n let S; be a multiplicative subset of A;. Set S := [/ S;.
Then, the following statements are equivalent:

(1) A is an S-endo-Noetherian ring.
(2) A; is an S;-endo-Noetherian ring for each 1 < i < n.

Proof.
Follows from Theorem 2.11. O

The following theorem characterizes when the duplication A > [ is an
S x S-endo-Noetherian ring.

Theorem 2.13. Let A be a ring and S a multiplicative subset of A and I
be a reqular ideal of A. The following assertions are equivalent:

(1) The ring A is S-endo-Noetherian.
(2) The duplication A1 is an S x S-endo-Noetherian ring.

Before proving Theorem 2.13, we first establish the following lemma.
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Lemma 2.14. Let A be a ring and I be a regular ideal of A. Let (a,a +
i), (b,b+3) two elements of A< I such that annasy(a, a+i) C anngsqr (b, b+
j). Then annaxa(a,a+1) C annaxa(b,b+ 7).

Proof. Let (z,y) € A X A such that (z,y) € annaxa(a,a + i). Then
(z,y)(a,a+1) = (0,0). Let k be a regular element of I. Then

(k,k)(z,y)(a,a+1) = (kx, kx + k(y — z))(a,a + 1) = (0,0).

Since (kz, kz+k(y—=x)) € A I, we conclude by hypothesis that (k, k)(z,y)
(b,b+ j) = (0,0). Now, since (k, k) is a regular element of A x A, we get
(z,y)(b,b+7) = (0,0). Hence annaxa(a,a+1i) C annaxa(b,b+ j). O

Proof of Theorem 2.13:

(1) = (2) Let (ag,ar + ix)ken+ be a sequence of elements of A 1 I
satisfying annasr(ai, a1 + i1) C anngsr(ag, ag + i2) C -+ . By Lemma
2.14 we have annaxa(ai,a1 +i1) C annaxa(ag,az + i2) C --- . Using
Theorem 2.11 there exist (s,s) € S x S and a positive integer n such that
for each k > n, (s, s).annaxa(ak, ap +ix) C annaxa(an, an + i), and then
(s,8).(Axa I Nannaxalag,ar + i) € A INannaxa(an,an + in). So
(s, 8).(ann asar (ag, ax +1ix)) C annaser(an, an+1iy,). Hence A< I is an S x S-
endo-Noetherian ring.

(2) = (1) This implication is true even if I is not a regular ideal. Let
(ar)ken+ be a sequence of elements of A satisfying ann(a1) C anna(az) C

- . It is clear that annawr(ai, a1) C annasr(ag,ag) C ---. Since A [
is an S x S-endo-Noetherian ring, there exist s € S and a positive integer
n such that for each k > n, (s, s).(annasr(ak, ar)) € anngsqr(an, an). Now,
let x € anna(ar). Then we have (x,x) € annas(ak,ar), which implies
(s,8)(z,z)(an,a,) = (0,0). Hence sz € ann(a,). Finally A is an S-endo-
Noetherian ring. (]

Corollary 2.15. [12, Theorem 2.13] Let A be a ring and I be a regular ideal
of A. The following assertions are equivalent:

(1) The ring A is an endo-Noetherian.

(2) The product ring A X A is endo-Noetherian ring.

(8) The duplication AT is an endo-Noetherian ring.

Proof.
(1) <= (2) Follows from Theorem 2.11 with S = {1}.
(1) <= (3) Follows from Theorem 2.13 with S = {1}. O

3. POLYNOMIALS AND FORMAL POWER SERIES OVER A
S-ENDO-NOETHERIAN RING

Recall from [16] that a commutative ring is called an Armendariz ring if
whenever the polynomials f = """ ;X" and g = > /" b; X" € R[X] with
f.g =0, then a;b; = 0 for every ¢ and j.
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Remark 3.1. Let R be an Armendariz ring. Let f = " ja; X ¢ and set
K = {a;|0 < i < n}. The fact that R is an Armendariz ring gives that
anng(K)[X] = anngx|(f). In particular, if K is a finite subset of R and
f € R|X] a polynomial whose set of coefficients is K, then anng(K)[X] =
aHHR[X](f )-

Remark 3.2. f I = (ag, ..., a,) is a finitely generated ideal of a ring R, then
anng (/) = anng(K), where K = {a;|0 < i < n}.

Theorem 3.3. Let R be an Armendariz ring and S be a multiplicative subset
of R. Then the following statements are equivalent:

(1) R[X] is an S-endo-Noetherian ring.

(2) R satisfies the S — acc on annihilators of finite subsets.

(8) R satisfies the S — acc on annihilators of finitely generated ideals of

R.
Proof.
(1) = (2) Let (kK;)ien+ be a sequence of non-empty finite subsets of R
such that anng(K;) C anngp(Ks) C ---. Clearly we have anng(K;)[X] C

annp(K2)[X] C ---. We consider f;(X) € R[X], a polynomial whose set of
coeflicients of fi is K; for each 1 € N*. By Remark 3.1, we have annpx) (fr) C
annpgx)(f2) € ---. Now, since R[X] is an S-endo-Noetherian ring, there ex-
ist s € Sanda p081tlve integer n such that s(annpgx)(fx)) € anngx)(fn) for
every positive integer k > n, which implies s(ann(Kk)[X]) C ann(K,)[X].
Hence, we conclude that there exist s € S and a positive integer n such that
s(ann(K})) C ann(K,) for every k > n.

(2) = (3) Follows from (2) and Remark 3.2.

3) = (1) Let (fi)ien+ be a sequence of elements of R[X] satisfying
annpg(x)(f1) € anngx)(f2) € ---. For each i € N*, let K; be the set
of the coefficients of fl Since R is an Armendariz ring, we conclude by
Remark 3.1, that (annpgx)(K1))[X] € (anngx)(K2))[X] € ---. Then
annp(Ki) C anng(Ks) C ---. Now, for each ¢ € N*, let I; be the ideal
generated by K;. According to Remark 3.2, we have anng(I;) C anng(lz) C

--. Since (3) holds, there exist s € S and a positive integer n such that
s(annp(f;) € anng(1,), and so s(anng(Kj) C anng(K,) for every positive
integer k > n. Now, the result follows from Remark 3.1. This completes the
proof. O

Lemma 3.4. Let R be a power series Armendariz ring, f(X) € R[[X]], and
L the set of the coefficients of f(X). Then, (anng(L)) [[X]] = anngx) (f)-

Proof.
Let g(X Zb X' € R[[X]]. Then g(X) € (anng(L)) [[X]], if and only
if for every i € N b; € anng(L) if and only if for every ¢ € N, ab; = 0 for

an arbitrary element a in L, that is g(X)f(X) = 0, which is equivalent to
saying that g(X) € annpgxj] (f) This completes the proof of the lemma. O
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Theorem 3.5. Let R be an Armendariz ring and S be a multiplicative subset
of R. Then the following statements are equivalent:
(1) R[[X]] is an S-endo-Noetherian ring.
(2) The ring R satisfies S — acc for the annihilators of the countably
sets.
(8) The ring R satisfies S — acc for the annihilators of the countably
generated ideals.

Proof.
(1) = (2) Let (L;)ien- be a sequence of countably subsets of A such that
annp(Ly) C annp(Lg) C ---. Then anng(L1)[[X]] C anng(L2)[|X]] C ---

For each i € N*, we consider f;(X) € R[[X]] whose set of coefficients is equal
to L;. By Lemma 3.4, we have annpgy))(f1(X)) € annpyxy(f2(X)) € ---
Now, since R[[X]] is an S-endo-Noetherian ring, there exist n € N* and s € S
such that s.anngx7(fx(X)) C annpyx) (fn(X)) for each k& > n. This implies
that s.anng(Ly)[[X]] C anng(Ly)[[X]], therefore s.anng(Ly) € anng(Ly,)
for each n > n, as desired.

(2) = (1) Assume that (2) holds and let (f;);en+ be a sequence of
elements of R[[X]] satisfying anngjxy(f1) C anngx)(f2) € ---. For each
i € N*, we denote by L; the set of the coefficients of f;. By Lemma 3.4 we
have anng(L1)[[X]] C anng(L2)[[X]] C -+, which implies that anng(L;) C
anng(Ly) C --- . By assumption there exist n € N* and s € S such that
s.anng(Lg) C anng(Ly,). Now the result follows from Lemma 3.4.

(2) = (3) Follows from the fact that if I is a countably generated ideal
of R whose countable set formed by the elements that generates I is .S, then
anng(I) = anng(9). O

Corollary 3.6. Let R be an Armendariz ring and S C R be a multiplicative
set. Then the following statements are equivalent:
(1) R[[X]] is an S-endo-Noetherian ring.
(2) For each sequence (fi)ken= of elements of R[[X]], fr = Zak’ij
Jj=0
satisfying annpyx))(f1) S anngyxy(f2) C -+, then there exist n €
N* and s € S such that for each k > n, we have s.(;> anng(ak,;) C
ijO anng(an,;)-
Proof. 4
Let f = Z a; X" and let L be the set of coefficients of f. It is enough to
>0
note that anng(K) = ;5 anng(a;). Now, the result follows immediately
from (1) < (2) of Theorem 3.5. O
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